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The computation of vibrational spectra of diatomic molecules through the exact diagonalization of algebraically
determined matrices based on powers of Morse coordinates is made substantially more efficient by choosing
a properly adapted quantum mechanical basis, specifically tuned to the molecular potential. A substantial
improvement is achieved while still retaining the full advantage of the simplicity and numerical light-
weightedness of an algebraic approach. In the scheme we propose, the basis is parametrized by two quantities
which can be adjusted to best suit the molecular potential through a simple minimization procedure.

1. Introduction

In a previous work,1 an algebraic method for the computation
of vibrational spectra of diatomic molecules was introduced.
Although this is a one-dimensional (1D) problem, thus an in
principle trivial task, the algebraic method shows substantial
advantages over both the real-space grid solution of the
Schrödinger equation and harmonic-oscillator-based techniques.
These advantages are especially important for extensions to the
multidimensional problem of polyatomic vibrations.

The expansion of the molecular potential in powers of the
Morse-potential-related quantityV(x) ) e-R(x-x0) - 1, namely

allows an efficient and accurate approximation of a well-behaved
molecular potential in the whole energy range, from the
minimum region to the dissociation threshold, generally involv-
ing a moderate number ofNmax + 1 parametersa2, ...,R andx0.
Even potentials substantially distorted with respect to the Morse
potential can be treated successfully. With the potential ex-
pressed in the form of eq 1, the complete Hamiltonian

(here,µ is the reduced mass of the two-body problem, andx is
the radial coordinate) can be represented on a quantum me-
chanical basis of choice.

The accuracy and efficiency of the direct diagonalization
methods rely both on the accuracy of the potential approximation
of eq 1 and on the properties of the selected basis. The basis
had better be complete but also manageable, that is, related to
the algebraic properties ofV(x), so that the evaluation of the
matrix elements can be done rapidly and without approxima-
tions; this will be needed especially in view of extensions to
polyatomic molecules.

2. The Basis

Previous research1-3 showed that the basis

with

and whereLn
F are generalized Laguerre polynomials can be

usefully employed in general diatomic contexts, with the special
choice of

where [s] indicates the integer part ofs and withs related to
the Morse terma2(V(x))2 in the potential expansion (eq 1), by

With the conditions of eqs 5 and 6, the basis (eq 3) was named
the quasi number state basis (QNSB).2 In the present work, we
only assume thatR andx0 in eqs 3 and 4 are the same as those
in the potential expansion (eq 1) and thatσ > 0 ands > -(1/
2), but we release all additional unnecessary conditions onσ
and s, for example, those expressed by eqs 5 and 6 or the
condition defined by Tennyson and Sutcliffe4,5 (TS)

with s fixed by eq 6. Equation 3 thus defines a (s,σ)-
parametrized family of bases, generalized QNSB (GQNSB), all
sharing the following main features: (i) the basis (eq 3) is
complete; (ii) the kinetic and potential operators can be written
in terms of generalized ladder operator, as specified below, so
that (iii) the matrix elements of a vast class of relevant operators
is computable easily and exactly by means of simple algebraic
relations.1

Even though all infinite GQNSBs are substantially equivalent,
regardless ofs andσ, different bases characterized by different
values ofs andσ show different performances when truncated
to a finite numberNs of states and applied to a given quantum
mechanical problem specified byµ, R, a2, a3, ...,aNmax. Indeed,
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the purpose of the present work is to demonstrate that a properly
chosen truncated GQNSB can improve the efficiency of the
computation substantially, compared to earlier choices.1,4

3. Matrix Elements

We follow here the same approach1 derived from supersym-
metric quantum mechanics.2,6 We introduce the generalized
Morse ladder operators1,2

parametrized by the real quantityq.7 These operators, with a
suitable choice ofq, act on the states (eq 3) of the GQNSB as
ladder operators

where

According to eqs 8 and 9,σ links the parametrized basis (eq
3) to the corresponding family of generalized ladder operators.
Thus, each and every basis of the form of eq 3 can be managed
algebraically in this formalism for any given choice ofσ > 0.
In practice, the eigenfunctions (eq 3) depend explicitly ons, R,
andx0, besidesσ. We fix x0 to the position of the minimum of
the potential (eq 1), as it would not provide a substantial
advantage to do otherwise. Likewise, we select forR the same
value as that in the potential expansion because, otherwise, all
relevant matrix representations would be dense rather than
sparse.8 With these constraints onx0 andR, an arbitrarys can
be usefully employed in the basis definition; for anys value,
the momentum operatorpx and the multiplication operator
e-R(x̂-x0) can be written in terms of the ladder operators (eq 8)

where theÂ operators also depend implicitly on thesparameter
appearing in the definition (eq 4) ofŷ. On the GQNSB (eq 3),
the matrix elements of any physical operator expressed as a
polynomial of e-R(x̂-x0) and px can be computed algebraically
since eqs 11 and 12 express them in terms of the ladder operators
of the corresponding specialized basis. Here, we explicitly derive
the algebraic form of the Morse Hamiltonian for the generalq
ands.

Using eq 12, the kinetic operatorK̂ ) (p̂x
2/2m) becomes

By applying the commutation relations

K̂ reduces to

Likewise, powers of e-R(x̂-x0) appearing in the potential energy
operator are obtained starting from eq 11. For example

Thus, the Morse potential term reads

Accordingly, the Morse HamiltonianĤM ) K̂ + a2(V(x̂))2 is
expressed in algebraic form as

The representation of eq 18 shows that the Morse Hamiltonian
is generally 5-band diagonal on a GQNSB of the form in eq 3.
We stress that the expression (eq 18) holds for any choice of
parameterss andq, regardless of them being connected to any
specific physical constraint.

If the condition

(equivalent to eq 6) is satisfied, then the last term, proportional
to [Â2(q) + Â†2(q)] drops fromĤM. In other words, the choice
of the parameters of eq 6 makes the Morse Hamiltonian
tridiagonal on the corresponding GQNSB basis, irrespective of
q. Under this special condition (eq 18), the Morse Hamiltonian
simplifies to

Â(q) ) qÎ - ŷ
2

+ i
pR

p̂x

Â†(q) ) qÎ - ŷ
2

- i
pR

p̂x (8)

Â(σ + n)φn ) Cnφn-1

Â†(σ + n)φn ) Cn+1φn+1 (9)

Cn ) xn(n + 2σ - 1) (10)

e-R(x̂-x0) )
2qÎ - [Â†(q) + Â(q)]

(2s + 1)
(11)

p̂x ) pR
2i
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K̂ ) -p2R2

8m
[Â2(q) + Â†2(q) - Â(q)Â†(q) - Â†(q)Â(q)] (13)

[Â(q),Â†(q′)] ) (q + q′)I - (Â(q) + Â†(q′))

[Â(q), Â(q′)] ) [Â†(q), Â†(q′)] ) 0 (14)

K̂ ) -p2R2
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[Â2(q) + Â†2(q) - 2qÎ + Â(q) +

Â†(q) - 2Â†(q)Â(q)] (15)

e-2R(x̂-x0) ) 1

(2s + 1)2
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The form of eq 20 indicates that by further setting

the operator form of the Hamiltonian simplifies even more, and
the Morse Hamiltonian factorizes as

which recovers the algebraic form of the Morse Hamiltonian
of previous works.1,2

The use of different values ofq ands produces a GQNSB,
where the algebraic computation of the matrix elements of the
Hamiltonian (eq 2) is not significantly more intricate; in
particular, on a GQNSB, the Morse Hamiltonian is 5-band
diagonal, rather than tridiagonal,9 and higher powers of (V(x))k

in eq 1 generate (2k + 1) band diagonal matrices (like in the
QNSB).

For practical potentials, usually substantially distorted from
the pure-Morse (V(x))2 term, the actual eigenfunctions can be
represented poorly by the [s] + 1 Morse bound states or,
equivalently, by their QNSB counterparts; to achieve a good
convergency of all eigenfunctions, the QNSB often needs to
be complemented by a large number of states, far beyond [s]
+ 1. A suitably chosen GQNSB can thus prove significantly
more efficient, especially in a multioscillator polyatomic context.

4. GQNSB Parametric Dependency

The shape of the wave functions (eq 3) depends on the four
parametersx0, R, s, and σ; different shapes imply different
convergence properties when employed to build the matrix
representation of the Hamiltonian. A brief analysis of the
dependency of the shape of the GQNSB states on the various
parameters can be useful to gain some insight into their role.10

Figure 1 shows the profile of three states of the form in eq 3,
under the conditions of eqs 5 and 6. Note that then ) 0 state
is located substantially at the right of the Morse equilibrium
position x0 and that further states move in towardx0 for
increasingn. This contrasts with the behavior of a basis of
energy eigenstates of a well centered inx0. Figure 2 illustrates
the behavior of a GQNSB wave function, eq 3, after variation
of the parameterssandσ involved relative to the QNSB values,
eqs 5 and 6. The dependence on thes parameter (Figure 2a) is
weak; by increasings, the eigenfunction shifts almost rigidly
toward the outer region. Theσ dependence (Figure 2b) is less
trivial; for larger σ, the wave function deforms and shrinks,
concentrating toward the region of the minimum and decaying
more rapidly at largex. The role of theσ parameter is
particularly important; as thenth GQNSB wave function (eq
3) has the general form

(Pol[y,n] stands for a polynomial of degreen in the variabley),
σ controls the decay rate of the wave functions fory f 0, that
is, at the dissociation region. In particular, by choosing a small
σ, the basis wave functions spread away from the well region,
thus improving the convergency of high-energy states, possibly
at the expense of quality of the low-energy states in the well.
Equation 23 and Figure 2 show that the general shape and, in
particular, the amount of localization of the GQNSB wave
functions can be tuned freely by choosing suitables and σ

parameters; this allows improvement of the variational efficiency
of a truncated GQNSB for a specific quantum mechanical
problem.

5. Optimization of the Basis Parameters

Assume that the exactNb bound-state eigenvaluesEi
ex of the

Hamiltonian are known; we can measure the rms discrepancy
of the discrete spectrum due to basis incompleteness by

in terms of the numerical eigenvaluesEi, obtained by diago-
nalizing the matrix ofĤ, eq 2, on a finite GQNSB composed
of the first Ns (>Nb) states and parametrized bys and σ. For
fixed Ns, we can search for the optimalsmin andσmin that make
∆̃ minimum.

In fact, the a priori knowledge of the exact eigenvaluesEi
ex

is not necessary; due to the variational nature of basis truncation,
a “better” basis makes all eigenvaluesEi lower. Accordingly,
the optimalsmin and σmin parameters can be defined as those

q ) s (21)

ĤM ) 4
a2

(2s + 1)2
[Â†(s)Â(s) - s2Î] (22)

φn(y) ∝ e-y/2yσPol[y, n] (23)

Figure 1. QNSB wave functions, forn ) 0, 4, and 8, compatible
with a Morse problem characterized byx0 ) 1, R ) 4/x0, anda2 )
625, in units whereµ ) 1 andp ) 1 so thats ) 8.34 andσ ) 0.34.

Figure 2. Variation of then ) 4 GQNSB wave function for a 50%
increase in the parameterss (a) orσ (b), solid line, with respect to the
QNSB starting wave function (dashed line), corresponding tos ) 8.34,
σ ) 0.34,x0 ) 1, andR ) 4/x0, like that in Figure 1.

∆̃2 )
1

Nb
∑
n)0

Nb-1

(En - En
ex)2 (24)
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producing the lowest eigenvalue spectrum for the assigned basis
sizeNs, that is, those minimizing

This approach only requires that the numberNb of bound
eigenstates is known. Of course, the numberNb of bound states
can be determined once and for all, for example, by means of
a calculation on a very extended QNSB. The minimization of
∆̃ and of∆ leads generally to slightly different results, but the
following qualitative discussion applies equally well to both
schemes. Unless specified, for the determination ofsmin andσmin,
we minimize∆ as defined in eq 25 and compare∆ to its fully
converged value∆0 computed on a largely complete basis.

In a typical application of the GQNSB, one starts from a
molecular potential energy expressed in terms of an expansion
of the form of eq 1. Before considering realistic dimers (H2

and Ar2), we illustrate the properties of the optimized GQNSB
for a simple model potential defined by

which we solve combined with a kinetic term specified byp )
1 andµ ) 1. We minimize∆ with respect tos andσ for two
fixed numbers of basis statesNs ) 30 and 16. Figure 3a shows
the values of the individual eigenvalue discrepancy (En -
En

ex)/a2 for the potential in eq 26, for the QNSB, for an
optimized GQNSB (OGQNSB), and for a GQNSB withs and
σ chosen according to the prescription of TS.4,5 That prescription
represents the basis used as the starting point of the optimization
process employed by TS;4,5 in those works, the optimization
was performed over parameters equivalent tox0 andR. We are
not interested here in comparing the accuracy of different
optimized basis but rather to study the convergency properties
of a GQNSB with givens andσ and with the samex0 andR
values.10 The optimized parameters of theNs ) 30 OGQNSB
are smin ) 20.01 andσmin ) 0.435, to be compared with the
QNSB ones,s ) 8.338 andσ ) 0.338, and those chosen
according to the prescription of TS,4,5 s ) 8.338 andσ ) 9.
For this potential,∆0 ) -444.90, and the corresponding∆ -
∆0 values are 3× 10-6 for the OGQNSB (∆ equaling∆0 to
five decimal digits), 0.061 for the QNSB, and 457 for the TS
choice. Both QNSB and the OGQNSB retrieve all of the bound
states, but the OGQNSB produces much better converged
eigenenergies, especially near dissociation. The TS basis instead

yields only 9 of the 14 bound states, only a few of which are
converged within 10-2a2, which explains the large discrepancy
of ∆ - ∆0.

Figure 3b shows the same individual discrepancies obtained
with a basis ofNs ) 16 states instead of 30. Thes andσ values
of the QNSB and the TS basis are, of course, unchanged, while
for the OGQNSB, they change tosmin ) 14.47 andσmin ) 0.314.
The discrepancies∆ - ∆0 deteriorate to 0.106, 87.35, and
4045.9 for OGQNSB, QNSB, and TS, respectively. Clearly, the
OGQNSB maintains a fair accuracy throughout the spectrum
by allowing for slightly less accurate lowest bound states, at
the benefit of those near dissociation. In contrast, theNs ) 16
QNSB fails in obtaining the two bound states closest to
dissociation, and the TS basis only produces six bound states.
Thus, basis parameter optimization allows a substantial im-
provement of the accuracy of the results, with the same
computational cost. In other words, the convergence speed of
the computation can be improved drastically by means of a
suitable choice ofs andσ; for example, Figure 3 demonstrates
an equal accuracy of the OGQNSB of 16 states and the QNSB
of 30 states.

Figure 4 illustrates a typicals dependence of the total
discrepancy∆ - ∆0; for σ equal to its optimal valueσmin (solid
curve), ass approaches the optimalsmin value from below,∆
decreases relatively slowly, while fors increasing beyondsmin,
∆ grows very steeply. Theσ dependence of∆ has a sharp and
roughly symmetrical deep minimum aroundσmin.

The reason for the observeds and σ dependencies of∆ is
related to the GQNSB wave function profiles of Figures 1 and
2 and eq 23. Whens increases, the GQNSB wave functions
shift almost rigidly toward the dissociation region of the
potential. As the GQNSB wave functions decay much more
rapidly for smallx than for largex, approachingsmin from below
the accuracy of the representation of the bound states localized
in the well region improves slowly, but soon after the optimal
s is found, all wave functions move their localization region to
the right of the equilibrium position and cease to account well
for the eigenstates behavior at the left ofx0. On the other hand,
σ affects mainly the vanishing rate for largex, which affects
the bound-state representation quite severely, but in a rather
symmetric way. Convergency can be quite substantially im-
proved by tuning the wave function localization, and this can
be achieved by choosing the most appropriates and σ, thus
precisely the OGQNSB.

Figure 3. Discrepancies (En - En
ex)/a2 of the individual eigenvaluesn

for the potentialV(x) ) a2[(V(x))2 + (V(x))4]. (a) Ns ) 30 (OGQNSB
with smin ) 20.01,σmin ) 0.435); and (b)Ns ) 16 (OGQNSB withs )
14.47, σ ) 0.314), for all bound states. The OGQNSB (diamonds)
discrepancies are compared to those based on the QNSB (circles) and
to the GQNSB based on the choice of (s,σ) made by Tennyson and
Sutcliffe4,5 (triangles).

Figure 4. The s dependence of∆, eq 25, forV(x) defined in eq 26,
computed with the GQNSB ofNs ) 30 elements as a function ofs,
and forσ fixed to σmin, to σmin ( 0.005, and toσmin ( 0.01.

∆ )
1

Nb
∑
n)0

Nb-1

En (25)

Nmax ) 4 a2 ) a4 ) 625 a3 ) 0 R ) 4 x0 ) 1 (26)
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6. Examples of Applications

The simple model potential of section 5 allowed us to
investigate the main properties of the optimized basis and the
role of parameterss andσ. After that quite artificial model, we
apply the present basis optimization method to two real dimers,
Ar2 and H2. These two very different 1D problems are good
testing grounds for evaluating the basis performance. We do
not aim at especially accurate spectroscopic results, which we
obtain nonetheless, despite the simplicity of our treatment.

6.1. Ar2. We compare the OGQNSB and the QNSB for the
calculation of the vibrational spectrum of the Argon dimer, for
which a reliable ab initio molecular potential is provided11 in
terms of a set of 47 points in the range ofx ) 0.25-20 Å.
Patkowski et al.11 propose an analytic expression fitting the ab
initio points rather accurately. We fit the ab initio data instead
to the expansion of eq 1, up to degreeNmax ) 8. The resulting
best-fit coefficients are reported in Table 1. Since the repulsive
small-x region does not affect the bound states significantly
anyway, we focus on the convergence inside of the binding well
region, with a weighted fit.12 Despite its simplicity, generality,
and the relatively small number of parameters involved (Nmax

+ 1 ) 9), the resulting expansion is quite accurate throughout
the whole energy range covered by the 47 ab initio points. In
particular, in the well region, the agreement is quite good, with
a rms discrepancyδRMS of less than 0.5 wavenumbers; see Table
1. Moreover, the resulting model potential does
not suffer from the unphysical small-x divergence to-∞ of the
fitted function11 and rather tracks the repulsive region within a
few electronvolts. The well depth (classical dissociation energy)
is

We apply the algebraic method and solve the resulting
quantum mechanical problem (eq 2) for the bound-state eigen-
values, using QNSB and GQNSB of different sizeNs. Table 2
compares the results obtained by the finite-differences solution

of the Schro¨dinger equation for the analytic potential by
Patkowski et al.11 and by numerical diagonalization of the
algebraic Hamiltonian (eq 2) with the parameters from Table 1
on a largeNs ) 100 OGQNSB (s ) 80.18,σ ) 0.213). This
large OGQNSB was chosen to ensure that the results were fully
converged and is taken as reference. The excitation energies
obtained using our expansion compare favorably to those
obtained by using the analytical expression by Patkowski et al.11

and to the experimentalJ ) 0 data,13 demonstrating equally
good or better agreement.

Table 3 illustrates the convergency properties of the unop-
timized QNSB by reporting the eigenvalues obtained by
diagonalizing the expanded Hamiltonian (eq 2) onNs ) 100,
20, and 15 states. The energy differences with respect to theNs

) 100 OGQNSB reference are shown, in parentheses, when
exceeding 10-3 cm-1. Fairly well converged results are obtained
even for the smallNs ) 15 QNSB. Notice however that the
bound state closest to dissociation is unbound forNs ) 15 and
20 since it is so extended that a rather large QNSB (Ns g 42)
is needed to obtain it at negative energy. Even the very large
Ns ) 100 QNSB does not provide a well-converged result for
that specific level.

By diagonalizing the expanded Hamiltonian (eq 2) onNs )
20 and 15 OGQNSB, we obtain the complete spectrum, and
with an accuracy∆ - ∆0 of 6 × 10-5 and 0.013 cm-1,
respectively. The accuracy of all bound levels but the last one
is basically the same as that for the corresponding QNSB, but
the complete discrete spectrum is obtained, including the highest
level. The accuracy of theNs ) 15 OGQNSB is therefore better
than that ofNs ) 100 QNSB for Ar2. Reducing the basis size
below Ns ) 15, the highest state is missing, but the GQNSB
can still be tuned to obtain a fair accuracy of all other states (∆
- ∆0 < 0.5cm-1 for Ns g 11).

6.2. H2. In a previous work,1 we applied the QNSB formalism
to the ab initio adiabatic potential14,15 for the H2 molecule. We
found that an expansion (eq 1) up toNmax ) 12 fits all 169
available ab initio points with a deviationδRMS ) 5.5 cm-1.
This expansion, whose parameters are reported in Table 4 of
ref 1, produces all of the 15 vibrational bound states of this
molecule. The QNSB parameters for this potential ares) 25.56
andσ ) 0.564. The QNSB produces a wavenumber-converged
spectrum usingNs g 28 basis states.16

By minimizing ∆̃, eq 24, we generate an OGQNSB of smaller
Ns. For the calculation of∆̃, we use the fully convergedNs )
200 QNSB results as reference, reported in the second column
of Table 4. AnNs ) 25 OGQNSB withs ) 26.36 andσ )
2.115 (∆̃ ) 0.173 cm-1) produces eigenvalues with the same
wavenumber figures, that is, the same accuracy of theNs ) 28
QNSB; since they are identical to the second column of Table
4, they are not shown. For less strict accuracy requirements,
one could reduce the basis size; the last two columns of Table
4 compare the eigenvalues obtained withNs ) 21 QNSB and

TABLE 1: Fit Quality and Parameters for a Model
Potential (eq 1),Nmax ) 8, to the Ar2 Potential

δRMS 0.26Eh

δRMS well 0.48 cm-1

R 0.516787a0
-1

a2 1359.70868µEh

a3 1136.96625µEh

a4 181.96578µEh

a5 -43.51541µEh

a6 3.77230µEh

a7 -0.13914µEh

a8 0.00202µEh

x0 7.116a0

TABLE 2: Energy Differences (in cm-1) between
ConsecutiveJ ) 0 Vibrational Levels of Ar 2

i - i′ numericala
OGQNSB
Ns ) 100 experimentb

1 - 0 25.76 25.64 25.69
2 - 1 20.49 20.43 20.58
3 - 2 15.44 15.46 15.58
4 - 3 10.79 10.90 10.91
5 - 4 6.75 6.92 6.84
6 - 5 3.56 3.71
7 - 6 1.36 1.31

a Numerical diagonalization of the Patkowski et al. potential.11

b Ultraviolet laser spectroscopy data by Herman et al.13

De ) ∑
i)2

Nmax

(-)iai ) 99.23 cm-1

TABLE 3: Bound-State Eigenvalues of the Ar2 Dimer,
Computed with Different Methods, All Based on the Ab
Initio Values11 [in cm-1]

state
OGQNSB
Ns ) 100

QNSB
Ns ) 100

QNSB
Ns ) 20

QNSB
Ns ) 15

0 -84.41 -84.41 (-) -84.41 (-) -84.40 (0.005)
1 -58.77 -58.77 (-) -58.77 (-) -58.75 (0.01)
2 -38.34 -38.34 (-) -38.34 (-) -38.31 (0.02)
3 -22.88 -22.88 (-) -22.88 (-) -22.84 (0.04)
4 -11.98 -11.98 (-) -11.98 (-) -11.93 (0.05)
5 -5.06 -5.06 (-) -5.06 (-) -5.02 (0.04)
6 -1.35 -1.35 (-) -1.35 (-) -1.32 (0.02)
7 -0.036 -0.015 (0.02) 0.022 (0.06) 0.051 (0.09)
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OGQNSB. The H2 potential expansion illustrates the robustness
of the GQNSB in state-poor situations; here, for theNs ) 21
QNSB eigenvalues, the differences with respect to the fully
converged values reach hundreds of wavenumbers, with a rms
discrepancy of∆̃ ) 323 cm-1, while the discrepancy of the
eigenvalues obtained by diagonalizing on theNs ) 21 OGQNSB
amounts to∆̃ ) 3.7 cm-1 only.

7. Conclusions

The substantial improvement of the variational accuracy of
the bound-state spectra computed on a OGQNSB with respect
to the unoptimized QNSB permits, in practice, calculations of
a given accuracy on a significantly smaller basis size to be made.
While this improvement is practically irrelevant to the solution
of the one-dimensional vibrational problem of diatomics, it is
of great importance for the application of this method to the
calculation of the spectra based on the ab initio multidimensional
potential surfaces of polyatomic molecules, as is currently
pursued in quantum chemical research.17-22 In particular, the
OGQNSB approach can be incorporated easily into most
present-day Morse-coordinate-based codes for computing vi-
brational spectra of polyatomic molecules.4,5,23-25 We are also
currently developing a custom implementation of a generaliza-
tion of the expansion in eq 1 to the polyatomic case,26 to be
solved in a multidimensional OGQNSB.
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TABLE 4: H 2 Bound-State Energies in Reduced-Size
Algebraic Bases; in Parentheses are the Differences with
Respect to the Reference [in cm-1]

state
QNSBa

Ns ) 200
QNSBb

Ns ) 21
OGQNSBc

Ns ) 21

0 -36113 -36113 (-) -36113 (-)
1 -31948 -31948 (-) -31948 (-)
2 -28020 -28019 (1) -28020 (-)
3 -24324 -24322 (2) -24324 (-)
4 -20856 -20845 (11) -20856 (-)
5 -17614 -17573 (41) -17614 (-)
6 -14599 -14486 (113) -14598 (1)
7 -11815 -11588 (227) -11814 (2)
8 -9271 -8907 (365) -9269 (3)
9 -6979 -6486 (493) -6975 (4)

10 -4955 -4376 (579) -4951 (4)
11 -3222 -2626 (596) -3218 (4)
12 -1810 -1281 (530) -1806 (5)
13 -761 -389 (372) -757 (4)
14 -135 -9 (126) -125 (10)

a Reference fully converged calculation.b Eigenvalues obtained with
anNs ) 21 QNSB. The maximum difference of 596 cm-1 corresponds
to 1.6% of the well depth.c Eigenvalues obtained with anNs ) 21
OGQNSB (s ) 23.52 andσ ) 3.194). The maximum difference of 10
cm-1 corresponds to 0.03% of the well depth.
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