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The computation of vibrational spectra of diatomic molecules through the exact diagonalization of algebraically
determined matrices based on powers of Morse coordinates is made substantially more efficient by choosing
a properly adapted quantum mechanical basis, specifically tuned to the molecular potential. A substantial
improvement is achieved while still retaining the full advantage of the simplicity and numerical light-
weightedness of an algebraic approach. In the scheme we propose, the basis is parametrized by two quantities
which can be adjusted to best suit the molecular potential through a simple minimization procedure.

1. Introduction nl
. . i) = Ay e YALY)
In a previous work, an algebraic method for the computation ™" I'(2o +n) n

of vibrational spectra of diatomic molecules was introduced. 0>0,n=0,1,2,..., 3)
Although this is a one-dimensional (1D) problem, thus an in

principle trivial task, the algebraic method shows substantial with

advantages over both the real-space grid solution of the

Schrainger equation and harmonic-oscillator-based techniques. y(X) = (2s + 1)e’a(X’X°) 4)
These advantages are especially important for extensions to the ) )
multidimensional problem of polyatomic vibrations. and whereLy are generalized Laguerre polynomials can be

The expansion of the molecular potential in powers of the usefully employed in general diatomic contexts, with the special
Morse-potential-related quantityx) = e > — 1, namely choice of

N . o=s-d 5)
Vy(X) = v(X 1
) k; A (09) @) where F| indicates the integer part &f and with s related to

- L the Morse termay(v(x))? in the potential expansion (eq 1), b
allows an efficient and accurate approximation of a well-behaved () P P (eq 1), by

molecular potential in the whole energy range, from the \/Zu_a
minimum region to the dissociation threshold, generally involv- s= 2_1 (6)
ing a moderate number dfnax + 1 parametersy, ....a andxo. ha 2

Even potentials substantially distorted with respect to the Morse
potential can be treated successfully. With the potential ex-
pressed in the form of eq 1, the complete Hamiltonian

With the conditions of eqs 5 and 6, the basis (eq 3) was named
the quasi number state basis (QNSR).the present work, we
only assume that andxo in egs 3 and 4 are the same as those

N pi in the potential expansion (eq 1) and tlwat 0 ands > —(1/
H=-+ VX (2) 2), but we release all additional unnecessary conditions on
u and s, for example, those expressed by eqs 5 and 6 or the

(here,u is the reduced mass of the two-body problem, aisl condition defined by Tennyson and Sutclfffg(TS)
the radial coordinate) can be represented on a quantum me-
chanical basis of choice. g8 +2 e

The accuracy and efficiency of the direct diagonalization 2
methods rely both on the accuracy of the potential approximation ) ) )
of eq 1 and on the properties of the selected basis. The basigVith s fixed by eq 6. Equation 3 thus defines a&o{-
had better be complete but also manageable, that is, related tarametrized family of bases, generalized QNSB (GQNSB), all
the algebraic properties af(x), so that the evaluation of the ~ sharing the following main features: (i) the basis (eq 3) is
matrix elements can be done rapidly and without approxima- complete; (ii) the kinetic and potential operators can be written
tions; this will be needed especially in view of extensions to N terms of generalized ladder operator, as specified below, so

polyatomic molecules. that (iii) the matrix elements of a vast class of relevant operators
is computable easily and exactly by means of simple algebraic
2. The Basis relationst

Even though all infinite GQNSBs are substantially equivalent,
regardless of ando, different bases characterized by different

* Part of the “Giacinto Scoles Festschrift” valuqs .ofs ando show different performances When truncated
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the purpose of the present work is to demonstrate that a properlyK reduces to
chosen truncated GQNSB can improve the efficiency of the -
computation substantially, compared to earlier cholées. - A% A AA

P Y, comp R = 5 IA() + A™0) — 2q] + A@) +
3. Matrix Elements Af(q) _ 2AT(q)A(q)] (15)

We follow here the same approdaterived from supersym- . . o . .
metric quantum mechaniéé. We introduce the generalized —Likewise, powers of e~ appearing in the potential energy

Morse ladder operator3 operator are obtained starting from eq 11. For example
A =i — ¥+ 1g o 20(x%) — Alta) 4 A
A =di-%+1p, —{(28 A~ R @ + A +
Aoy = o — 3 Az(q) +A(o) + A@A' (@) + A'@AG)
Na@=qi-2-:Lp, ® ) '
——(2(2° + o)l — (4q+ 1IA'(@) +
parametrized by the real quantity’ These operators, with a (2 S+ 1)
suitable choice ofj, act on the states (eq 3) of the GQNSB as A(Q)] +2AT(q)A(q) + AX(q) + A(g)} (16)

ladder operators )
Thus, the Morse potential term reads

Al + n)g, = Co,1
X _ T
Ao+ g, = Corsthin ©) (v(%))? m{Z(Zq +0)i — (49 + D[A'(q) +

I A@)] + 2A(@)AQ) + Az(q) + A%} -

2q1 — [Al(g) + A
¢ - ETHTT ) s 2~ @ + Al
1 R
According to egs 8 and 9; links the parametrized basis (eq = m{@‘f —2q—8sql + (4s—4q+1)x
3) to the corresponding family of generalized ladder operators. A R o ~ 42
Thus, each and every basis of the form of eq 3 can be managed [A(9) + A@] + 2A(9A(Q) + A(g) + A (@)} (17)
algebraically in this formalism for any given choice @f> 0.
In practice, the eigenfunctions (eq 3) depend explicitlysom,
andxg, besidesy. We fix xg to the position of the minimum of
the potential (eq 1), as it would not provide a substantial
advantage to do otherwise. Likewise, we selectofdhe same |5|M =
value as that in the potential expansion because, otherwise, all

Accordingly, the Morse Hamiltoniaily = K + ax(v(X))? is
expressed in algebraic form as

2a, h (X.

72 U
25+ 17 + | A @A@ +

relevant matrix representations would be dense rather than hZ 2
sparsé. With these constraints oxy and o, an arbitrarys can q ﬁ( q—1—4s) +—— i+
be usefully employed in the basis definition; for asyalue, (2s+ )
the momentum operatgp, and the multiplication operator a _ At
—a(=%) can be written in terms of the ladder operators (eq 8) (2s + 1) ( 44+ [A @+ A(Q)]
o-axg _ 201 — [AT@) + A@)] 1) % hg [A%(q) + A™()] (18)
(2s+ 1) (2s+1) m

Ao ~t The representation of eq 18 shows that the Morse Hamiltonian
= E[A(CI) —A(a)] (12) is generally 5-band diagonal on a GQNSB of the form in eq 3.
We stress that the expression (eq 18) holds for any choice of
where theA operators also depend implicitly on ta@arameter parameters andq, regardless of them being connected to any
appearing in the definition (eq 4) § On the GQNSB (eq 3),  specific physical constraint.
the matrix elements of any physical operator expressed as a If the condition
polynomial of e*¢>) andp, can be computed algebraically

since eqs 11 and 12 express them in terms of the ladder operators & _ iaz (19)

of the corresponding specialized basis. Here, we explicitly derive (2s+1)y> 8m

the algebraic form of the Morse Hamiltonian for the general

ands. (equivalent to eq 6) is satisfied, then the last term, proportional
Using eq 12, the kinetic operatér = (p2/2m) becomes to [A%(q) + A'¥q)] drops fromHy. In other words, the choice

of the parametess of eq 6 makes the Morse Hamiltonian
A 02 Ao ~i2 At At tridiagonal on the corresponding GQNSB basis, irrespective of
K=—"gq A0 +A™0) — A@A(a) — A@A@)] (13) 0. Under this special condition (eq 18), the Morse Hamiltonian

A~

simplifies to
By applying the commutation relations 4
o R R . At _ At

[A@), A@)] = [AT(g), A'(@)] =0 (14) (o — 2991} (20)
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The form of eq 20 indicates that by further setting T T T T

q=s (21) ~ 1k _
CRIANE
the operator form of the Hamiltonian simplifies even more, and oeo 0

the Morse Hamiltonian factorizes as

~ a, At A A I R T I
H,, = 4———[Al(9A(s) — ] (22) R B R
2 2L _
(2s+1) n=4
which recovers the algebraic form of the Morse Hamiltonian E - [\ _
of previous works:? 6 "o [ ~—
The use of different values a@f ands produces a GQNSB, <
where the algebraic computation of the matrix elements of the Ak -

Hamiltonian (eq 2) is not significantly more intricate; in
particular, on a GQNSB, the Morse Hamiltonian is 5-band
diagonal, rather than tridiagondind higher powers ofy(x))k

in eq 1 generate R+ 1) band diagonal matrices (like in the
QNSB).

For practical potentials, usually substantially distorted from
the pure-Morse (x))? term, the actual eigenfunctions can be
represented poorly by thes|][+ 1 Morse bound states or,
equivalently, by their QNSB counterparts; to achieve a good L1
convergency of all eigenfunctions, the QNSB often needs to 0O 1 2 3 4 5
be complemented by a large number of states, far beygnd [ X/X0
+tLA §g|tably ch0§en GQNSB.C"’“? thus prove S|gn|f|cantly Figure 1. QNSB wave functions, fon = 0, 4, and 8, compatible
more efficient, especially in a multioscillator polyatomic context. " porse problem characterized by = 1, & = 4fx, andap =

625, in units where: = 1 andh = 1 so thats = 8.34 ando = 0.34.

4. GQNSB Parametric Dependency

The shape of the wave functions (eq 3) depends on the four 2r @ + (®) 4
parametersq, a, s, and o; different shapes imply different

convergence properties when employed to build the matrix = ':.‘A T {\
representation of the Hamiltonian. A brief analysis of the o ot~ [T se
dependency of the shape of the GQNSB states on the various i ‘\V V’
parameters can be useful to gain some insight into their'fole. Aap T

Figure 1 shows the profile of three states of the form in eq 3, N L
under the conditions of eqs 5 and 6. Note thatritve O state

is located substantially at the right of the Morse equilibrium Figure 2. Variation of then = 4 GQNSB wave function for a 50%

position xo and that further states move in towarg for increase in the parametesga) oro (b), solid line, with respect to the
increasingn. This contrasts with the behavior of a basis of QNSB starting wave function (dashed line), correspondirgrtds.34,

energy eigenstates of a well centereckgnFigure 2 illustrates o = 0.34,% = 1, anda. = 4/x,, like that in Figure 1.
the behavior of a GQNSB wave function, eq 3, after variation
of the parametersando involved relative to the QNSB values,
egs 5 and 6. The dependence ondlparameter (Figure 2a) is
weak; by increasing, the eigenfunction shifts almost rigidly
toward the outer region. The dependence (Figure 2b) is less
trivial; for larger o, the wave function deforms and shrinks,
concentrating toward the region of the minimum and decaying ~ Assume that the exadt, bound-state eigenvalu&” of the
more rapidly at largex. The role of theo parameter is Hamiltonian are known; we can measure the rms discrepancy
particularly important; as theth GQNSB wave function (eq  of the discrete spectrum due to basis incompleteness by

3) has the general form

parameters; this allows improvement of the variational efficiency
of a truncated GQNSB for a specific quantum mechanical
problem.

5. Optimization of the Basis Parameters

Np—1
2_ _ex2
#uly) D e Polly, ] (23) AR E TR @4
(Pol[y,n] stands for a polynomial of degreein the variabley), in terms of the numerical eigenvalugs obtained by diago-
o controls the decay rate of the wave functionsyet- 0, that nalizing the matrix ofH, eq 2, on a finite GQNSB composed

is, at the dissociation region. In particular, by choosing a small of the firstNs (>Ny) states and parametrized byand ¢. For

o, the basis wave functions spread away from the well region, fixed Ns, we can search for the optims}in andomin that make
thus improving the convergency of high-energy states, possibly A minimum.

at the expense of quality of the low-energy states in the well.  In fact, the a priori knowledge of the exact eigenval&&s
Equation 23 and Figure 2 show that the general shape and, inis not necessary; due to the variational nature of basis truncation,
particular, the amount of localization of the GQNSB wave a “better” basis makes all eigenvalugslower. Accordingly,
functions can be tuned freely by choosing suitabland o the optimalsmin and omin parameters can be defined as those
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Figure 3. Discrepanciest, — E:)/a, of the individual eigenvalues

for the potentiaM(x) = ay[(v(X))? + (v(X))*]. (@) Ns = 30 (OGQNSB

with Spin = 20.01,0min = 0.435); and (bNs = 16 (OGQNSB withs =

14.47,0 = 0.314), for all bound states. The OGQNSB (diamonds)

discrepancies are compared to those based on the QNSB (circles) and

to the GQNSB based on the choice sfo) made by Tennyson and

Sutcliffe’ (triangles). 0

p_roducing the lowest eig_envqlpe spectrum for the assigned basiq;igure 4. The's dependence oh, eq 25, forV(x) defined in eq 26,
sizeNs, that is, those minimizing computed with the GQNSB dfl; = 30 elements as a function f
and foro fixed to omin, t0 omin £ 0.005, and tarmin £ 0.01.
Np—1
A= i E (25) yields only 9 of the 14 bound states, only a few of which are
N, & " converged within 18%a,, which explains the large discrepancy
of A — Ao.
Figure 3b shows the same individual discrepancies obtained
with a basis ofNs = 16 states instead of 30. Teeando values
of the QNSB and the TS basis are, of course, unchanged, while
for the OGQNSB, they change $gin = 14.47 andrmi, = 0.314.
The discrepancied — Ap deteriorate to 0.106, 87.35, and
4045.9 for OGQNSB, QNSB, and TS, respectively. Clearly, the
OGQNSB maintains a fair accuracy throughout the spectrum
by allowing for slightly less accurate lowest bound states, at
the benefit of those near dissociation. In contrast,Nbe= 16
QNSB fails in obtaining the two bound states closest to
dissociation, and the TS basis only produces six bound states.
Thus, basis parameter optimization allows a substantial im-
provement of the accuracy of the results, with the same
computational cost. In other words, the convergence speed of
the computation can be improved drastically by means of a
suitable choice of ando; for example, Figure 3 demonstrates
Npax =4 8=3=625 28=0 a=4 x=1 (26) an equal accuracy of the OGQNSB of 16 states and the QNSB
of 30 states.

This approach only requires that the numbéy of bound
eigenstates is known. Of course, the nunidgof bound states
can be determined once and for all, for example, by means of
a calculation on a very extended QNSB. The minimization of
A and of A leads generally to slightly different results, but the
following qualitative discussion applies equally well to both
schemes. Unless specified, for the determinaticg,@andomin,

we minimizeA as defined in eq 25 and compaketo its fully
converged valué\, computed on a largely complete basis.

In a typical application of the GQNSB, one starts from a
molecular potential energy expressed in terms of an expansion
of the form of eq 1. Before considering realistic dimers, (H
and Anr), we illustrate the properties of the optimized GQNSB
for a simple model potential defined by

which we solve combined with a kinetic term specifiedfos Figure 4 illustrates a typicab dependence of the total
1 andu = 1. We minimizeA with respect tos and o for two discrepancyA — Ag; for o equal to its optimal valuemi, (solid
fixed numbers of basis staté = 30 and 16. Figure 3a shows  curve), ass approaches the optimah, value from belowA
the values of the individual eigenvalue discrepang&y ¢ decreases relatively slowly, while fsiincreasing beyonéyn,

E.)/ay for the potential in eq 26, for the QNSB, for an A grows very steeply. The dependence ok has a sharp and
optimized GQNSB (OGQNSB), and for a GQNSB waland roughly symmetrical deep minimum arounghjn.

o chosen according to the prescription of #SThat prescription The reason for the observedand o dependencies oA is
represents the basis used as the starting point of the optimizatiorrelated to the GQNSB wave function profiles of Figures 1 and
process employed by T% in those works, the optimization 2 and eq 23. Whes increases, the GQNSB wave functions
was performed over parameters equivalenitando.. We are shift almost rigidly toward the dissociation region of the
not interested here in comparing the accuracy of different potential. As the GQNSB wave functions decay much more
optimized basis but rather to study the convergency propertiesrapidly for smallx than for largex, approachingmi» from below

of a GQNSB with givens and o and with the samep anda the accuracy of the representation of the bound states localized
values!® The optimized parameters of tila = 30 OGQNSB in the well region improves slowly, but soon after the optimal
are Smin = 20.01 andony,in = 0.435, to be compared with the sis found, all wave functions move their localization region to
QNSB ones,s = 8.338 ando = 0.338, and those chosen the right of the equilibrium position and cease to account well

according to the prescription of T%,s = 8.338 ando = 9. for the eigenstates behavior at the lefixgfOn the other hand,
For this potential Ao = —444.90, and the correspondinAg— o affects mainly the vanishing rate for large which affects
Ao values are 3x 1076 for the OGQNSB A equalingAg to the bound-state representation quite severely, but in a rather

five decimal digits), 0.061 for the QNSB, and 457 for the TS symmetric way. Convergency can be quite substantially im-
choice. Both QNSB and the OGQNSB retrieve all of the bound proved by tuning the wave function localization, and this can
states, but the OGQNSB produces much better convergedbe achieved by choosing the most appropr&atnd o, thus
eigenenergies, especially near dissociation. The TS basis insteagrecisely the OGQNSB.
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TABLE 1: Fit Quality and Parameters for a Model TABLE 3: Bound-State Eigenvalues of the Ap Dimer,
Potential (eq 1),Nmax = 8, to the Ar, Potential Computed with Different Methods, All Based on the Ab
Initio Values?! [in cm~1]
OrRMS 0.26E;
Srus well 0.48 cn? OGQNSB  QNSB QNSB QNSB
a 0516783, state Ng=100  N;= 100 N = 20 Ne= 15
a 1359.70868.En 0 —8441 —84.41() —8441()  —84.40(0.005)
as 1136.96623En 1 -5877 -5877() —-5877()  —58.75(0.01)
& 181.96578En 2 —3834 —3834() —3834()  —38.31(0.02)
3 —43.51541E, 3  —22.88 —22.88() —2288() —22.84(0.04)
3 3.7723QuEy 4 -11.98 -11.98¢)  -11.98¢)  —11.93(0.05)
a —0.13914uE, 5 —506 —5.06() —5.06 () —5.02 (0.04)
as 0.00202uEx 6 135 —135() ~1.35 () ~1.32(0.02)
Xo 7.1160 7  -0036 —0.015(0.02) 0.022(0.06)  0.051 (0.09)

TABLE 2: Energy Differences (in cm™1) between L . . .
ConsecutiveJ = 0 Vibrational Levels of Ar, of the Schidinger equation for the analytic potential by

Patkowski et al! and by numerical diagonalization of the

i numericat ?ESTS(? experimerit algebraic Hamiltonian (eq 2) with the parameters from Tqble 1
on a largeNs = 100 OGQNSB ¢ = 80.18,0 = 0.213). This
% B (1J gg:zg gg:gg gg:gg large OGQNSB was chosen to ensure that the re_sul_ts were fu!ly
3_2 15.44 15.46 15.58 converged and is taken as reference. The excitation energies
4—3 10.79 10.90 10.91 obtained using our expansion compare favorably to those
5-4 6.75 6.92 6.84 obtained by using the analytical expression by Patkowski®t al.
6-5 3.56 371 and to the experimental = 0 datal® demonstrating equally
7—6 1.36 1.31
good or better agreement.
2 Numerical diagonalization of the Patkowski et al. poterifial. Table 3 illustrates the convergency properties of the unop-
> Ultraviolet laser spectroscopy data by Herman é€al. timized QNSB by reporting the eigenvalues obtained by
o diagonalizing the expanded Hamiltonian (eq 2)y~= 100,
6. Examples of Applications 20, and 15 states. The energy differences with respect tithe

The simple model potential of section 5 allowed us to = 100 OGQNSB reference are shown, in parentheses, when
investigate the main properties of the optimized basis and the €xceeding 10° cm™™. Fairly well converged results are obtained
role of parameters ando. After that quite artificial model, we ~ €ven for the smalNs = 15 QNSB. Notice however that the
apply the present basis optimization method to two real dimers, bound state closest to dissociation is unbound\p#= 15 and
Ar, and H. These two very different 1D problems are good 20 since it is so extended that a rather large QNEBX( 42)
testing grounds for evaluating the basis performance. We dois needed to obtain it at negative energy. Even the very large
not aim at especially accurate spectroscopic results, which weNs = 100 QNSB does not provide a well-converged result for
obtain nonetheless, despite the simplicity of our treatment.  that specific level.

6.1. Ar,. We compare the OGQNSB and the QNSB for the  BY diagonalizing the expanded Hamiltonian (eq 2)Nyw
calculation of the vibrational spectrum of the Argon dimer, for 20 and 15 OGQNSB, we obtain the complete spectrum, and
which a reliable ab initio molecular potential is provideih with an accuracyA — Ao of 6 x 10 and 0.013 cm,
terms of a set of 47 points in the rangeof= 0.25-20 A. respectively. The accuracy of all bound levels but the last one
Patkowski et at! propose an analytic expression fitting the ab IS basically the same as that for the corresponding QNSB, but
initio points rather accurately. We fit the ab initio data instead the complete discrete spectrum is obtained, including the highest
to the expansion of eq 1, up to degmﬁax = 8. The resumng level. The accuracy of tI‘NS =15 OGQNSB is therefore better
best-fit coefficients are reported in Table 1. Since the repulsive than that ofNs = 100 QNSB for Ap. Reducing the basis size
smallx region does not affect the bound states significantly Pelow Ns = 15, the highest state is missing, but the GQNSB
anyway, we focus on the convergence inside of the binding well ¢&n still be tuned to obtain a fair accuracy of all other states (
region, with a weighted fit2 Despite its simplicity, generality, =~ — Ao < 0.5cm~* for Ns = 11).
and the relatively small number of parameters involvisglat 6.2. Ho. In a previous work,we applied the QNSB formalism
+ 1= 9), the resulting expansion is quite accurate throughout t0 the ab initio adiabatic potentfdf*>for the H molecule. We
the whole energy range covered by the 47 ab initio points. In found that an expansion (eq 1) up M = 12 fits all 169
particular, in the well region, the agreement is quite good, with available ab initio points with a deviatiodrms = 5.5 cnm™.

a rms discrepancyrs of less than 0.5 wavenumbers; see Table This expansion, whose parameters are reported in Table 4 of
1. Moreover, the resulting model potential does ef 1, produces all of the 15 vibrational bound states of this

fitted functiort! and rather tracks the repulsive region within a ando = 0.564. The QNSB produces a wavenumber-converged

few electronvolts. The well depth (classical dissociation energy) SPectrum usindNs = 28 basis states.
is By minimizing A, eq 24, we generate an OGQNSB of smaller

Ns. For the calculation oA, we use the fully convergells =
Nimax 200 QNSB results as reference, reported in the second column
De=Y (-)'a=99.23cm* of Table 4. AnNs = 25 OGQNSB withs = 26.36 ando =
& 2.115 A = 0.173 cm?) produces eigenvalues with the same
wavenumber figures, that is, the same accuracy of\trwe 28
We apply the algebraic method and solve the resulting QNSB; since they are identical to the second column of Table
guantum mechanical problem (eq 2) for the bound-state eigen-4, they are not shown. For less strict accuracy requirements,
values, using QNSB and GQNSB of different sidg Table 2 one could reduce the basis size; the last two columns of Table
compares the results obtained by the finite-differences solution 4 compare the eigenvalues obtained with= 21 QNSB and
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TABLE 4: H , Bound-State Energies in Reduced-Size
Algebraic Bases; in Parentheses are the Differences with
Respect to the Reference [in cm]

QNSB* QNSP’ OGQNSB
state N = 200 Ne= 21 Ne= 21

0 —36113 —36113 () —36113 ()
1 —31948 —31948 () —31948 ()
2 —28020 —28019 (1) —28020 ()
3 —24324 —24322 (2) —24324 ()
4 —20856 —20845 (11) —20856 )
5 ~17614 —17573 (41) —17614 ()
6 —14599 —14486 (113) —14598 (1)
7 —11815 —11588 (227) —11814 (2)
8 -9271 —8907 (365) —9269 (3)
9 —6979 —6486 (493) —6975 (4)
10 —4955 —4376 (579) —4951 (4)
11 —3222 —2626 (596) —3218 (4)
12 -1810 —1281 (530) —1806 (5)
13 —761 —389 (372) —757 (4)
14 -135 -9 (126) —125 (10)

a Reference fully converged calculatiohEigenvalues obtained with
anNs = 21 QNSB. The maximum difference of 596 chtorresponds
to 1.6% of the well deptht Eigenvalues obtained with aNs = 21
OGQNSB 6= 23.52 ands = 3.194). The maximum difference of 10
cm* corresponds to 0.03% of the well depth.

OGQNSB. The Hpotential expansion illustrates the robustness
of the GQNSB in state-poor situations; here, for te= 21
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